Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Molecules ; 29(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257310

RESUMEN

The unrestricted utilization of antibiotics poses a critical challenge to global public health and safety. Levofloxacin (LEV) and sulfaphenazole (SPN), widely employed broad-spectrum antimicrobials, are frequently detected at the terminal stage of water treatment, raising concerns regarding their potential conversion into detrimental disinfection byproducts (DBPs). However, current knowledge is deficient in identifying the potential DBPs and elucidating the precise transformation pathways and influencing factors during the chloramine disinfection process of these two antibiotics. This study conducts a comprehensive analysis of reaction pathways, encompassing piperazine ring opening/oxidation, Cl-substitution, OH-substitution, desulfurization, and S-N bond cleavage, during chloramine disinfection. Twelve new DBPs were identified in this study, exhibiting stability and persistence even after 24 h of disinfection. Additionally, an examination of DBP generation under varying disinfectant concentrations and pH values revealed peak levels at a molar ratio of 25 for LEV and SPN to chloramine, with LEV contributing 11.5% and SPN 23.8% to the relative abundance of DBPs. Remarkably, this research underscores a substantial increase in DBP formation within the molar ratio range of 1:1 to 1:10 compared to 1:10 to 1:25. Furthermore, a pronounced elevation in DBP generation was observed in the pH range of 7 to 8. These findings present critical insights into the impact of the disinfection process on these antibiotics, emphasizing the innovation and significance of this research in assessing associated health risks.


Asunto(s)
Levofloxacino , Purificación del Agua , Levofloxacino/farmacología , Sulfafenazol , Cloraminas/farmacología , Desinfección , Antibacterianos/farmacología
2.
Water Res ; 249: 120958, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064782

RESUMEN

Drinking water distribution systems (DWDSs) are important for supplying high-quality water to consumers and disinfectant is widely used to control microbial regrowth in DWDSs. However, the disinfectant's influences on microbial community and antibiotic resistome in DWDS biofilms and the underlying mechanisms driving their dynamics remain elusive. The study investigated the effects of chlorine and chloramine disinfection on the microbiome and antibiotic resistome of biofilms in bench-scale DWDSs using metagenomics assembly. Additionally, the biofilm activity and viability were monitored based on adenosine triphosphate (ATP) and flow cytometer (FCM) staining. The results showed that both chlorine and chloramine disinfectants decreased biofilm ATP, although chloramine at a lower dosage (1 mg/L) could increase it. Chloramine caused a greater decrease in living cells than chlorine. Furthermore, the disinfectants significantly lowered the microbial community diversity and altered microbial community structure. Certain bacterial taxa were enriched, such as Mycobacterium, Sphingomonas, Sphingopyxis, Azospira, and Dechloromonas. Pseudomonas aeruginosa exhibited high resistance towards disinfectants. The disinfectants also decreased the complexity of microbial community networks. Some functional taxa (e.g., Nitrospira, Nitrobacter, Nitrosomonas) were identified as keystones in chloramine-treated DWDS microbial ecological networks. Stochasticity drove biofilm microbial community assembly, and disinfectants increased the contributions of stochastic processes. Chlorine had greater promotion effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and ARG hosts than chloramine. The disinfectants also selected pathogens, such as Acinetobacter baumannii and Klebsiella pneumonia, and these pathogens also harbored ARGs and MGEs. Overall, this study provides new insights into the effects of disinfectants on biofilm microbiome and antibiotic resistome, highlighting the importance of monitoring and managing disinfection practices in DWDSs.


Asunto(s)
Desinfectantes , Agua Potable , Microbiota , Purificación del Agua , Desinfectantes/farmacología , Agua Potable/química , Cloraminas/farmacología , Cloro/farmacología , Antibacterianos/farmacología , Bacterias/genética , Biopelículas , Adenosina Trifosfato
3.
Environ Pollut ; 341: 122902, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949160

RESUMEN

Booster disinfection was often applied to control the microorganism's growth in long-distance water supply systems. The effect of booster disinfection on the changing patterns of antibiotic resistance and bacterial community was investigated by a simulated water distribution system (SWDS). The results showed that the antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) were initially removed after dosing disinfectants (chlorine and chloramine), but then increased with the increasing water age. However, the relative abundance of ARGs significantly increased after booster disinfection both in buck water and biofilm, then decreased along the pipeline. The pipe materials and disinfectant type also affected the antibiotic resistance. Chlorine was more efficient in controlling microbes and ARGs than chloramine. Compared with UPVC and PE pipes, SS pipes had the lowest total bacteria, ARB concentration, and ARB percentage, mainly due to higher disinfectant residuals and a smoother surface. The significant correlation (rs = 0.77, p < 0.001) of the 16S rRNA genes was observed between buck water and biofilm, while the correlations of targeted ARGs were found to be weak. Bray-Curtis similarity index indicated that booster disinfection significantly changed the biofilm bacterial community and the disinfectant type also had a marked impact on the bacterial community. At the genus level, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium significantly increased after booster disinfection. Mycobacterium increased after chloramination while decreased after chlorination, indicating Mycobacterium might resist chloramine. Pseudomonas, Methylobacterium, and Phreatobacter were found to correlate well with the relative abundance of ARGs. These results highlighted antibiotic resistance shift and bacterial community alteration after booster disinfection, which may be helpful in controlling potential microbial risk in drinking water.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Agua Potable/microbiología , Desinfección/métodos , Cloraminas/farmacología , Cloro/farmacología , Cloro/análisis , Prevalencia , ARN Ribosómico 16S , Antagonistas de Receptores de Angiotensina/farmacología , Purificación del Agua/métodos , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Desinfectantes/farmacología , Desinfectantes/análisis , Bacterias , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Genes Bacterianos
4.
Chemosphere ; 344: 140382, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806328

RESUMEN

Residual chlorine and biofilm coexistence is inevitable in drinking water transmission and distribution networks. Understanding the microbial response and its mediated effects on disinfection byproducts under different categories of residual chlorine stress is essential to ensure water safety. The aim of our study was to determine the response of pipe wall biofilms to residual chlorine pressure in chlorine and chloramine systems and to understand the microbially mediated effects on the formation and migration of haloacetonitriles (HANs), typical nitrogenous disinfection byproducts. According to the experimental results, the biofilm response changes under pressure, with significant differences noted in morphological characteristics, the extracellular polymeric substances (EPS) spatial structure, bacterial diversity, and functional abundance potential. Upon incubation with residual chlorine (1.0 ± 0.2 mg/L), the biofilm biomass per unit area, EPS, community abundance, and diversity increased in the chloramine group, and the percentage of viable bacteria increased, potentially indicating that the chloramine group provides a richer variety of organic matter precursors. Compared with the chloramine group, the chlorination group exhibited increased haloacetonitrile formation potential (HANFP), with Rhodococcus (43.2%) dominating the system, whereas the prediction abundance of metabolic functions was advantageous, especially with regard to amino acid metabolism, carbohydrate metabolism, and the biodegradation and metabolism of foreign chemicals. Under chlorine stress, pipe wall biofilms play a stronger role in mediating HAN production. It is inferred that chlorine may stimulates microbial interactions, and more metabolites (e.g., EPS) consume chlorine to protect microbial survival. EPS dominates in biofilms, in which proteins exhibit greater HANFP than polysaccharides.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Desinfección , Cloraminas/farmacología , Cloraminas/metabolismo , Cloro/farmacología , Cloro/metabolismo , Abastecimiento de Agua , Agua Potable/química , Bacterias/metabolismo , Biopelículas , Purificación del Agua/métodos , Desinfectantes/farmacología , Desinfectantes/metabolismo
5.
Water Res ; 244: 120531, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659185

RESUMEN

With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm2 UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl2/L chlorine (0.67 log), 2 mg-Cl2/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.


Asunto(s)
Desinfectantes , Ozono , Cloro/farmacología , Cloraminas/farmacología , Desinfección , Matriz Extracelular de Sustancias Poliméricas , Halógenos , Bacterias , Desinfectantes/farmacología , Carbono , Cloruros
6.
Bull Exp Biol Med ; 175(2): 201-204, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37466859

RESUMEN

We studied the properties of N6-chloroadenosine phosphates (ATP, ADP, and AMP chloramines) as compounds with potentially increased antiplatelet efficacy determined by their binding to the plasma membrane of platelets. Chloramine derivatives of ATP, ADP, and AMP do not differ in their optical absorption characteristics: their absorption spectra are in the range of 220-340 nm with a maximum at 264 nm. Chloramines of adenosine phosphates are characterized by high reactivity with respect to thiol compounds. In particular, the rate constants of the reaction of N6-chloroadenosine-5'-diphosphate with N-acetylcysteine, reduced glutathione, dithiothreitol, and cysteine reach 59,000, 250,000, 340,000, and 1,250,000 M-1×sec-1, respectively, and only 1.10±0.02 M-1×sec-1 with methionine. It has been found that N6-chloradenosine-5'-triphosphate is a strong inhibitor of platelet functions: it effectively suppresses ADP-induced cell aggregation (IC50 in the whole blood is 5 µM) and inhibits aggregation of preactivated platelets and induces dissociation of their aggregates.


Asunto(s)
Cloraminas , Agregación Plaquetaria , Cloraminas/farmacología , Cloraminas/química , Cloraminas/metabolismo , Compuestos de Azufre/metabolismo , Compuestos de Azufre/farmacología , Plaquetas , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Azufre/farmacología , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología
7.
Water Res ; 226: 119309, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369682

RESUMEN

The inactivation efficacy by monochloramine for disinfecting gastroenteritis-causing rotaviruses (RV) and Tulane viruses (TV), a surrogate for noroviruses, were evaluated in this study. In addition, the strategies for improving the disinfection efficiency of monochloramine by raising the temperature and sequentially implementing UV irradiation were investigated. The results showed that monochloramine was more effective in the inactivation of TV than RV. Additionally, the inactivation rate constants of RV and TV by monochloramine at 35 °C were improved approximately by 46% and 100%, respectively, compared to those at 25 °C. Moreover, applying UV irradiation before monochloramine enhanced the inactivation efficacy of RV and TV by 63% and 72% compared to monochloramine alone (UV: 6 mJ/cm2, NH2Cl: 60 ppm × min). Furthermore, the synergistic effect was observed during the RV inactivation by the sequential process. Especially, higher than 0.5 log10 reductions of RV VP1 genome contributed to the synergistic effect in sequential treatment, while less than 0.1 log10 reductions of RV VP1 genome were observed during UV alone (13 mJ/cm2) or monochloramine alone (94 ppm × min). The genome damage might be the primary mechanism of generating synergy in sequential treatment for the inactivation of RV. By comparison, no synergistic effect was discovered for the inactivation of TV due to high susceptibility to monochloramine and UV. The findings on the inactivation efficacy and mechanism for improvement will contribute to a wide application of monochloramine for virus inactivation in water treatment and distribution systems.


Asunto(s)
Norovirus , Rotavirus , Humanos , Norovirus/genética , Cloraminas/farmacología , Inactivación de Virus , Desinfección/métodos
8.
Chem Biodivers ; 19(8): e202200338, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35818907

RESUMEN

A two-step tandem protocol was used to prepare new pyrrole and/or arene-linked bis(1,3,4-oxadiazoles) as well as their mono-analogs. The appropriate aldehydes and benzohydrazides were first condensed in ethanol at 80 °C to yield the corresponding N-benzoylhydrazones. Without isolation, the previous intermediates were subjected to a chloramine trihydrate-mediated oxidative cyclization in DMSO at 180 °C to yield the target molecules. The antibacterial potency of the (pyrrole-arene)-linked hybrids exceeded the arene-linked hybrids, and the bis(1,3,4-oxadiazoles) exceeded their mono-analogs against six different ATCC strains. Furthermore, the antibacterial efficacy of bis(1,3,4-oxadiazoles) 11c, and 11f, which are linked to pyrrole, and (p-tolylthio)methyl units, was highest against S. aureus, E. coli, and P. aeruginosa strains. Their MIC ranged between 3.8 and 3.9 µM, while their MBC values ranged between 7.7 and 15.8 µM. Additionally, they showed promising bacterial biofilm inhibitory activity against the same strains tested, with IC50 values ranging from 4.7 to 5.3 µM. They were also effective against MRSA ATCC : 33591, and ATCC : 43300 strains, with MIC, and MBC values ranging from 3.8-7.9 and 7.7-15.8 µM, respectively. When tested against the MCF-10A cell lines, hybrids 11c, and 11f are cytotoxic at concEntrations that are more than 6 and 13-fold higher than their MIC values against the S. aureus, E. coli, and P. aeruginosa strains, respectively. This lends support to both hybrids' potential as safe antibacterial agents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Bacterias , Biopelículas , Cloraminas/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Oxadiazoles/farmacología , Pseudomonas aeruginosa , Pirroles/farmacología , Staphylococcus aureus
9.
Arch Pharm (Weinheim) ; 355(10): e2200170, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35853239

RESUMEN

A new series of pyrrole-linked mono- and bis(1,3,4-oxadiazole) hybrids, attached to various arene units, was prepared using a two-step tandem protocol. Therefore, a benzohydrazide derivative was condensed with the appropriate aldehydes in ethanol at 80°C for 60-150 min to give the corresponding N-(benzoylhydrazones). Without isolation, the previous intermediates underwent intramolecular oxidative cyclization in dimethyl sulfoxide at 180°C for 90-200 min in the presence of chloramine trihydrate to afford the target hybrids. The cytotoxicity of all hybrids was examined in vitro against the MCF-7, HEPG2, and Caco2 cell lines. Arene-linked hybrids 4i and 4j, attached to p-nitro and p-acetoxy units, were the most potent ones, with IC50 values ranging from 5.47 to 8.80 and 12.75 to 21.22 µM, respectively, when tested on the above cell lines. At the tested concentrations of 5 and 7.5 µM, hybrid 4i inhibited thymidylate synthase (TS) with the best inhibition percentages of 72.3 and 91.3, whereas hybrid 4j displayed comparable inhibitory activity to the reference pemetrexed. Hybrid 4j had inhibition percentages of 62.7 and 82.6, whereas pemetrexed had inhibition percentages of 59.2 and 80.2, respectively. The capability of hybrids 4i and 4j as potential TS inhibitors is supported by molecular docking studies, while SwissADME predicts their efficacy as drug-like scaffolds.


Asunto(s)
Antineoplásicos , Oxadiazoles , Aldehídos/farmacología , Antineoplásicos/farmacología , Células CACO-2 , Proliferación Celular , Cloraminas/farmacología , Dimetilsulfóxido/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Etanol/farmacología , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Oxadiazoles/farmacología , Pemetrexed/farmacología , Pirroles/farmacología , Relación Estructura-Actividad , Timidilato Sintasa/metabolismo , Timidilato Sintasa/farmacología
10.
Environ Technol ; 43(21): 3212-3220, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33856959

RESUMEN

Chlorine and chloramine are widely used to maintain the microbial safety after drinking water treatment plants. Particles existing in the treated water may react with these chemical disinfectants, and impact the efficacy of disinfection. However, the protective effects of particles without-disinfectant demand on bacteria in the chlorination/chloramination are not well known. In this study, two laboratory-derived bacteria (Staphylococcus aureus and Escherichia coli) and two no-disinfectant demand particles (Fe2O3 and kaolin) in drinking water were selected to build particle-associated bacteria (PAB) systems, and their resistance to chlorine/chloramine was further assessed. Flow cytometry (FCM) was employed to image PAB systems and assess the removal rate of bacteria. The results were that particles showed protective effects on bacteria in half of chlorine experiments and 90% of chloramination. The protection was related to the combination form of particles and bacteria tied to neither particle species nor size, and there was no positive relationship between the protection effect and water turbidity. S. aureus attached to Fe2O3 had stronger resistance than kaolin, and kaolin protected E. coli better than Fe2O3. The same trend was observed in both chemical disinfectants, and more significant resistance had been shown in chloramination than chlorination. FCM images which gave a qualitative description on the combination states of different PAB systems may be a clue to explain the strength of the resistance. Environmental bacterial strains and particles are recommended in the future to explore practical applications.


Asunto(s)
Desinfectantes , Agua Potable , Purificación del Agua , Bacterias , Cloraminas/farmacología , Cloro/farmacología , Desinfectantes/farmacología , Desinfección/métodos , Escherichia coli , Citometría de Flujo , Halogenación , Caolín , Staphylococcus aureus , Purificación del Agua/métodos
11.
Microbiol Spectr ; 9(2): e0030121, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34549994

RESUMEN

Intervening proteins, or inteins, are mobile genetic elements that are translated within host polypeptides and removed at the protein level by splicing. In protein splicing, a self-mediated reaction removes the intein, leaving a peptide bond in place. While protein splicing can proceed in the absence of external cofactors, several examples of conditional protein splicing (CPS) have emerged. In CPS, the rate and accuracy of splicing are highly dependent on environmental conditions. Because the activity of the intein-containing host protein is compromised prior to splicing and inteins are highly abundant in the microbial world, CPS represents an emerging form of posttranslational regulation that is potentially widespread in microbes. Reactive chlorine species (RCS) are highly potent oxidants encountered by bacteria in a variety of natural environments, including within cells of the mammalian innate immune system. Here, we demonstrate that two naturally occurring RCS, namely, hypochlorous acid (the active compound in bleach) and N-chlorotaurine, can reversibly block splicing of DnaB inteins from Mycobacterium leprae and Mycobacterium smegmatis in vitro. Further, using a reporter that monitors DnaB intein activity within M. smegmatis, we show that DnaB protein splicing is inhibited by RCS in the native host. DnaB, an essential replicative helicase, is the most common intein-housing protein in bacteria. These results add to the growing list of environmental conditions that are relevant to the survival of the intein-containing host and influence protein splicing, as well as suggesting a novel mycobacterial response to RCS. We propose a model in which DnaB splicing, and therefore replication, is paused when these mycobacteria encounter RCS. IMPORTANCE Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing. Traditionally considered molecular parasites, some inteins have emerged in recent years as adaptive posttranslational regulatory elements. Several studies have demonstrated CPS, in which the rate and accuracy of protein splicing, and thus host protein functions, are responsive to environmental conditions relevant to the intein-containing organism. In this work, we demonstrate that two naturally occurring RCS, including the active compound in household bleach, reversibly inhibit protein splicing of Mycobacterium leprae and Mycobacterium smegmatis DnaB inteins. In addition to describing a new physiologically relevant condition that can temporarily inhibit protein splicing, this study suggests a novel stress response in Mycobacterium, a bacterial genus of tremendous importance to humans.


Asunto(s)
Cloro/farmacología , AdnB Helicasas/antagonistas & inhibidores , Inteínas/genética , Mycobacterium leprae/genética , Mycobacterium smegmatis/genética , Empalme de Proteína/efectos de los fármacos , Cloraminas/farmacología , Cloro/química , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Ácido Hipocloroso/farmacología , Mycobacterium leprae/metabolismo , Mycobacterium smegmatis/metabolismo , Oxidantes/farmacología , Oxidación-Reducción , Empalme de Proteína/fisiología , Especies Reactivas de Oxígeno/metabolismo , Taurina/análogos & derivados , Taurina/farmacología
12.
J Hazard Mater ; 417: 126082, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34020351

RESUMEN

Although drinking water disinfection proved to be an effective strategy to eliminate many pathogens, bacteria can still show disinfection tolerance in drinking water distribution systems. To date, the molecular mechanisms on how environmental stress affects the tolerance of Pseudomonas aeruginosa to monochloramine are not well understood. Here, we investigated how three stress conditions, namely starvation, low temperature, and starvation combined with low temperature, affected the monochloramine tolerance of Pseudomonas aeruginosa, an opportunistic pathogen commonly found in drinking water distribution systems. All stress conditions significantly promoted monochloramine tolerance, among which starvation had the most drastic effects. Proteomic analyses suggested that the three conditions not only triggered a positive antioxidant defense against oxidative damages but also prepared the bacteria to employ a passive defense mechanism against disinfectants via dormancy. Moreover, the expression of antioxidant enzymes reached the maximum under the starvation condition and further low temperature treatment had little effect on bacterial response to oxidative stress. Instead, we found further treatment of the starved cells with low temperature decreased the osmotic stress response and the stringent response, which generally play pivotal roles in disinfection tolerance. Taken together, these findings shed light on how abiotic factors influence the bacterial disinfection tolerance and will aid design of efficient strategies to eliminate Pseudomonas aeruginosa from drinking water.


Asunto(s)
Desinfectantes , Agua Potable , Cloraminas/farmacología , Desinfectantes/toxicidad , Desinfección , Proteómica , Pseudomonas aeruginosa
13.
Appl Microbiol Biotechnol ; 105(9): 3799-3810, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33885926

RESUMEN

Bacterial biofilms are able to persist in drinking water distribution systems (DWDS) even if disinfectants such as monochloramine are used to inhibit bacterial colonization and biofilm formation. While studies have determined the monochloramine concentrations required to inhibit bacterial biofilms, not much is known about how bacterial biofilms develop resistance towards monochloramine. This study covers the development of resistance to monochloramine in both single species and mixed bacterial biofilms. Through culturability tests and flow cytometry, exposing bacterial biofilms to monochloramine disinfection using a sub-lethal concentration (1.5 mg/L Cl2, experimentally determined) was sufficient to cause an increase of the monochloramine's inhibitory concentrations by as much as two times than what is initially required to inhibit biofilm growth. Through persister cultures and 16S rRNA next generation sequencing (NGS) studies, mixed bacterial biofilms experienced to monochloramine exposure resulted in more bacterial genera becoming persistent and resistant towards monochloramine. Through this study, bacterial genera that were persistent towards monochloramine were suggested to share common traits including the ability (1) to readily enter a persister or viable but non-culturable (VBNC) state and (2) to form biofilms primarily comprising proteinaceous extra-polymeric substances (EPS). Both of these traits also suggested that selected bacterial genera tended to be more persistent to monochloramine and produce EPS. This study advances our understanding of bacterial biofilm resistance towards monochloramine and showed the importance of maintaining monochloramine concentrations in DWDS to prevent the development of bacterial resistance towards monochloramine. KEY POINTS: • Monochloramine-resistant biofilm was developed after sub-lethal disinfection. • Mixed-species culture experienced monochloramine showed more persistence to monochloramine. • Ability to enter a persister/VBNC state is a common trait of persistent bacteria genera.


Asunto(s)
Desinfectantes , Agua Potable , Pseudomonas putida , Biopelículas , Cloraminas/farmacología , Desinfectantes/farmacología , Desinfección , Pseudomonas putida/genética , ARN Ribosómico 16S/genética
14.
Cell Calcium ; 96: 102391, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33752082

RESUMEN

Redox-sensitivity is a common property of several transient receptor potential (TRP) ion channels. Oxidants and UVA-light activate TRPV2 by oxidizing methionine pore residues which are conserved in the capsaicin-receptor TRPV1. However, the redox-sensitivity of TRPV1 is regarded to depend on intracellular cysteine residues. In this study we examined if TRPV1 is gated by UVA-light, and if the conserved methionine residues are relevant for redox-sensitivity of TRPV1. Patch clamp recordings were performed to explore wildtype (WT) and mutants of human TRPV1 (hTRPV1). UVA-light induced hTRPV1-mediated membrane currents and potentiated both proton- and heat-evoked currents. The reducing agent dithiothreitol (DTT) prevented and partially reversed UVA-light induced sensitization of hTRPV1. UVA-light induced sensitization was reduced in the mutant hTRPV1-C158A/C387S/C767S (hTRPV1-3C). The remaining sensitivity to UVA-light of hTRRPV1-3C was not further reduced upon exchange of the methionine residues M568 and M645. While UVA-induced sensitization was reduced in the protein kinase C-insensitive mutant hTRPV1-S502A/S801A, the PKC-inhibitors chelerythrine chloride, staurosporine and Gö6976 did not reduce UVA-induced effects on hTRPV1-WT. While hTRPV1-3C was insensitive to the cysteine-selective oxidant diamide, it displayed a residual sensitivity to H2O2 and chloramine-T. However, the exchange of M568 and M645 in hTRPV1-3C did not further reduce these effects. Our data demonstrate that oxidants and UVA-light gate hTRPV1 by cysteine-dependent as well as cysteine-independent mechanisms. In contrast to TRPV2, the methionine residues 568 and 645 seem to be of limited relevance for redox-sensitivity of hTRPV1. Finally, UVA-light induced gating of hTRPV1 does not seem to require activation of protein kinase C.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Oxidantes/farmacología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/efectos de la radiación , Rayos Ultravioleta , Cloraminas/farmacología , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , Activación del Canal Iónico/fisiología , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Canales Catiónicos TRPV/agonistas , Compuestos de Tosilo/farmacología
15.
Huan Jing Ke Xue ; 42(2): 860-866, 2021 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-33742880

RESUMEN

To study the effect of combined ultraviolet (UV) chloramine disinfection on viruses in a drinking water supply system, a full-scale experiment was conducted to analyze the distribution, variability, community structure, and hosts of viruses using metagenomics. The results showed that the combined UV chloramine process reduced the number of virus species (6.13%) and gene abundance (51.97%) but did not completely remove the viruses from the water. The United States Environmental Protection Agency (USEPA) report that virus removal efficiencies from water can reach 99%-99.99% based on culturing methods. However, in this study, metagenomic analysis indicated a total virus removal rate of only 93.46%. Therefore, the detection of viruses in water using culturing method cannot reliably detect viruses in drinking water. Caudovirales are the most abundant type of virus in water supply systems and are sensitive to chloramine disinfection. Lentivirus, as a virus that can infect humans and vertebrates, has strong resistance to UV and chloramine disinfection. The main virus hosts in the studied water supply system were bacteria (61.50%). The viruses in the raw water were mainly parasitic in Synechococcus. The dominant virus host was Pseudomonas in both the effluent water and pipe network water. The gene abundance of the Pseudomonas aeruginosa host in the pipe network increased by 342.62%, which requires further attention as a virus risk in pipe network systems. Overall, combined UV chloramine disinfection was more effective at the removal of virus hosts than single UV disinfection (51.97% compared to 0.79%).


Asunto(s)
Agua Potable , Virus , Purificación del Agua , Cloraminas/farmacología , Desinfección , Humanos , Rayos Ultravioleta , Estados Unidos , Abastecimiento de Agua
16.
Environ Mol Mutagen ; 62(3): 168-176, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33484035

RESUMEN

Drinking water disinfection by-products (DBPs), including the ubiquitous trihalomethanes (THMs), are formed during the treatment of water with disinfectants (e.g., chlorine, chloramines) to produce and distribute potable water. Brominated THMs (Br-THMs) are activated to mutagens via glutathione S-transferase theta 1 (GSTT1); however, iodinated THMs (I-THMs) have never been evaluated for activation by GSTT1. Among the I-THMs, only triiodomethane (iodoform) has been tested previously for mutagenicity in Salmonella and was positive (in the absence of GSTT1) in three strains (TA98, TA100, and BA13), all of which have error-prone DNA repair (pKM101). We evaluated five I-THMs (chlorodiiodomethane, dichloroiodomethane, dibromoiodomethane, bromochloroiodomethane, and triiodomethane) for mutagenicity in Salmonella strain RSJ100, which expresses GSTT1, and its homologue TPT100, which does not; neither strain has pKM101. We also evaluated chlorodiiodo-, dichloroiodo-, and dibromoiodo-methanes in strain TA100 +/- rat liver S9 mix; TA100 has pKM101. None was mutagenic in any of the strains. The I-THMs were generally more cytotoxic than their brominated and chlorinated analogues but less cytotoxic than analogous trihalonitromethanes tested previously. All five I-THMs showed similar thresholds for cytotoxicity at ~2.5 µmoles/plate, possibly due to release of iodine, a well-known antimicrobial. Although none of these I-THMs was activated by GSTT1, iodoform appears to be the only I-THM that is mutagenic in Salmonella, only in strains deficient in nucleotide excision repair (uvrB) and having pKM101. Given that only iodoform is mutagenic among the I-THMs and is generally present at low concentrations in drinking water, the I-THMs likely play little role in the mutagenicity of drinking water.


Asunto(s)
Agua Potable/química , Mutagénesis/efectos de los fármacos , Salmonella/efectos de los fármacos , Trihalometanos/toxicidad , Animales , Cloraminas/efectos adversos , Cloraminas/farmacología , Clorofluorocarburos de Metano/efectos adversos , Clorofluorocarburos de Metano/farmacología , Desinfectantes/efectos adversos , Desinfectantes/farmacología , Glutatión Transferasa/química , Humanos , Hidrocarburos Yodados/efectos adversos , Hidrocarburos Yodados/farmacología , Mutágenos/toxicidad , Ratas , Salmonella/genética , Trihalometanos/farmacología
17.
Pathog Dis ; 79(1)2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33351093

RESUMEN

Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.


Asunto(s)
Cloro/metabolismo , Escherichia coli/metabolismo , Ácido Hipocloroso/metabolismo , NADPH Oxidasa 2/metabolismo , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Cloraminas/farmacología , Cloro/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ácido Hipocloroso/farmacología , Viabilidad Microbiana , Neutrófilos/microbiología , Oxidación-Reducción , Fagocitosis , Factores de Transcripción/genética
18.
Carbohydr Polym ; 250: 116928, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33049842

RESUMEN

Electron-deficient chlorine covalently immobilised on an amido group of hyaluronic acid (HA) can be potentially exceptional for applications requiring biodegradable and biocompatible polymers with enhanced antibacterial or antiviral activity. This expectation is supported by the assumption that a small amount of HA chloramide (HACl) is formed in the extracellular matrix under inflammatory conditions by a reaction of endogenous HA with hypochlorous acid (HClO) generated by a myeloperoxidase/H2O2/Cl- system. HACl synthesis optimisation showed significant limitations of HClO as an oxidative agent where only lower degrees of substitution (DS) was achieved. Commercially available oxidative agents based on chlorinated isocyanuric acid were successfully tested, producing the HA chain with almost entirely chlorinated amidic groups. The structure of the final HACl was thoroughly studied using advanced 2-dimensional NMR methodologies and LC/MS. Stability of HACl at different temperatures was monitored over 12 months. Preliminary antimicrobial and antiviral tests demonstrated the potential of HACl for applications in biomedicine.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antivirales/farmacología , Cloraminas/farmacología , Ácido Hialurónico/química , Ácido Hipocloroso/química , Antibacterianos/química , Antifúngicos/química , Antivirales/química , Bacterias/efectos de los fármacos , Cloraminas/química , Hongos/efectos de los fármacos , Halogenación , Virus/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-32842654

RESUMEN

The formation of potentially carcinogenic N-nitrosamines, associated with monochloramine, requires further research due to the growing interest in using this biocide for the secondary disinfection of water in public and private buildings. The aim of our study was to evaluate the possible formation of N-nitrosamines and other toxic disinfection by-products (DBPs) in hospital hot water networks treated with monochloramine. The effectiveness of this biocide in controlling Legionella spp. contamination was also verified. For this purpose, four different monochloramine-treated networks, in terms of the duration of treatment and method of biocide injection, were investigated. Untreated hot water, municipal cold water and, limited to N-nitrosamines analysis, hot water treated with chlorine dioxide were analyzed for comparison. Legionella spp. contamination was successfully controlled without any formation of N-nitrosamines. No nitrification or formation of the regulated DBPs, such as chlorites and trihalomethanes, occurred in monochloramine-treated water networks. However, a stable formulation of hypochlorite, its frequent replacement with a fresh product, and the routine monitoring of free ammonia are recommended to ensure a proper disinfection. Our study confirms that monochloramine may be proposed as an effective and safe strategy for the continuous disinfection of building plumbing systems, preventing vulnerable individuals from being exposed to legionellae and dangerous DBPs.


Asunto(s)
Cloraminas , Desinfectantes , Purificación del Agua , Cloraminas/farmacología , Desinfectantes/farmacología , Desinfección , Humanos , Agua , Microbiología del Agua
20.
Free Radic Biol Med ; 159: 119-124, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32739594

RESUMEN

The bactericidal activity of the physiological oxidant hypochlorous acid (HOCl) is commonly studied in a variety of laboratory media. Reactive with numerous targets, HOCl will rapidly lose its toxicity via reduction or be converted to chloramines and other less toxic species. The objective of this study was to test the influence of various media, temperature and reaction time on the toxicity of HOCl. After incubating bacteria in media dosed with reagent HOCl, the bactericidal outcome was measured by colony forming ability. In parallel, we determined the HOCl and chloramine content after dosing media alone. Our results showed that more reagent HOCl was required to kill bacteria in culture media than in aqueous buffer, and this corresponded to the lower concentration of reactive chlorine species achieved in the media. RPMI and MOPS minimal medium retained significant oxidising equivalents after HOCl-dosing, but more nutrient-rich media such as MEM, DMEM, LB and TSB, had higher scavenging capacity. Other factors that lowered the bactericidal strength of HOCl were longer lag-times and raised temperature when pre-dosing media, and insufficient incubation time of cells with the HOCl-treated media. In summary, we demonstrate that the choice of media as well as procedural details within experiments crucially impact the cellular toxicity of HOCl. These factors influence the nature and concentration of oxidants generated, and therefore are critical in affecting cellular responses.


Asunto(s)
Cloraminas , Ácido Hipocloroso , Bacterias , Cloraminas/farmacología , Cloro , Medios de Cultivo , Oxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...